Air flow measurement
Differential pressure

Measurement of air speed and direction to control the tunnel ventilation
Air flow measurement

Features

- Robust air flow monitoring system based on high-precision differential pressure measurement
- 2-point mesh
- Automatic zeroing of differential pressure transducers
- Touch evaluation and control unit to display measured values, status and set parameters
- Connection to tunnel control system by RS-485 MODBUS RTU, optionally by analogue outputs and relay contacts

System setup

- Two differential pressure pitot tubes mounted on opposite tunnel walls; pneumatically connected to the terminal boxes
- Terminal boxes with differential pressure transducers to be mounted in the tunnel or remotely outside of the driving area (high temperature variant); either
 - 1 terminal box: pneumatic connection to opposite side
 - 2 terminal boxes: electric connection to opposite side
- Touch evaluation and control unit to be mounted in closet outside the tunnel’s driving area (niche, cross-cut, etc.); Connection to terminal box by RS-485 MODBUS RTU; Connection to tunnel control system by RS-485 MODBUS RTU
- Optional analogue outputs and relay contacts by DIN rail mounted devices

Operation

- The air flow monitoring system measures the longitudinal air flow at 2 points in a tunnel cross section. The method allows to optionally remove all electronic components from the tunnels driving area to maintain a measurement also under high temperatures.

 Two differential pressure pitot tubes are mounted on opposite tunnel walls. Measuring the air flow at 2 points allows to calculate a representative average air flow over the tunnel cross section.

- An air flow in the tunnel generates a dynamic pressure on the side of the pitot tube facing the flow of air while on the other side only the static pressure is present. The measured differential pressure is used to calculate the air velocity under consideration of the also measured temperature. The values of the 2 measuring points are then averaged.

- Following outputs are available: air velocity, direction of air flow, air temperature.

Advantages

- Specifically designed for tunnels
- Easy installation and setup
- Long term stability by automatic zeroing
- Measurement possible at high temperatures
- Corrosion resistant against aggressive tunnel atmosphere
- Minimised spare requirements
- Extremely low maintenance requirements

Application

Tunnels are important infrastructure elements in road networks and facilitate the connection of regions.

Environmental conditions in tunnels are influenced by fog, particles and emissions and need to be monitored to protect people on their passage through the tunnel from danger and impacts on their health. Accidents in tunnels, and particularly fires, can have dramatic consequences and can prove extremely costly in terms of human life, increased congestion, pollution and repair costs.

At every time people in the tunnel need to be supplied with breathable air and sufficient visibility.

Since 1990 JES Elektrotechnik GmbH develops, installs and maintains systems to monitor air quality and lighting conditions in tunnels. Our systems are robust, durable and resistant against the corrosive atmosphere in a tunnel. They operate reliably and have a high accuracy in measurement.

All systems fulfil the requirements of the EC guideline 2004/54/EC (Minimum safety requirements for tunnels in the trans-European road network) and the more precise national guidelines and provisions:

- Austria: RVS 09.02 Tunnelausrüstung
- Germany: RABT Richtlinien für die Ausstattung und den Betrieb von Straßentunneln
- Switzerland: Astra Richtlinien und Fachhandbuch Betriebs- und Sicherheitsausrüstungen (BSA)

Our range of products for tunnel covers systems for monitoring of:

- Toxic gases like CO, NO, NO₂ (extractive or in-situ)
- Visibility (extractive or in-situ)
- Air speed, direction and temperature
- Luminance (access, threshold and interior zone)
- Illuminance
Technical Data

Air flow measurement

Measuring method
Determination of average air flow through 2 point mesh measurement by differential pressure pitot tubes

Measured values
- Air velocity
- Air flow direction
- Temperature

Measuring range
-20 .. 20 m/s

Resolution
0.1 m/s, Accuracy depending on: installation, flow profile, typ. <±0.2 m/s at 3 m/s

Response time
1s..180 s, parametrierbar

Alignment
Differential pressure pitot tubes mounted on opposite tunnel walls

Outputs

Digital interface
1 x RS-485 MODBUS RTU to tunnel control system (other interfaces on request)

Analogue outputs (optional)
Up to 4 x 4-20 mA, 500 Ω

Relay contacts (optional)
- 1 x fault indication (NC)
- 1 x direction of air flow (NC)
 - max. 2 A @ 30 VDC oder 2 A @ 250 VAC

Differential pressure pitot tube

Type
JES t/FL-DP SR

Temperature range
-30 .. 400 °C

Dimensions
609 x h x 400 mm (b x h x t)

Weight
5.5 kg

Material
Stainless steel 1.4571/316Ti oder 1.4404/316L

Terminal box

Type
JES t/FL-DP TB

Operating voltage
85 .. 264 VAC, 47 .. 63 Hz

IP rating
IP65

Temperature range
-30 .. 80 °C

Dimensions
360 x 250 x 173 mm

Weight
11 kg

Material
Solid rubber self-extinguishing, halogen and silicon free or Stainless steel 1.4404 or 1.4571 (at surcharge)

Conformities

Electrical standards
2006/95/EC Low voltage directive (LVD)
2004/108/EC Electromagnetic compatibility (EMC)

Tunnel safety standards
AT: RVS 09.02.22 2010 & ASFINAG PlaPB
DE: RABT 2006
CH: ASTRA RL 13001 & FHB BSA

Contact

JES Elektrotechnik GmbH
Davisstrasse 7
5400 Hallein
Austria

Phone: +43 (6245) 81785
Fax: +43 (6245) 81785-600
Email: info@tunnelsafety.at
Web: www.tunnelsafety.at