

Beleuchtungsstärkemessung

Anpassung der Tunnelbeleuchtung an die Umgebungsverhältnisse

Beleuchtungsstärkemessung

Merkmale

- Photometer zur Messung der Beleuchtungsstärke am Montageort des Sensors (in-situ)
- · Cosinus korrigiert
- V(λ) angepasst
- · Lieferung anschlussfertig
- Schlagfestes ABS Gehäuse
- Optional Geräteausführung mit beheiztem IP65 Übergehäuse erhältlich

Systemkomponenten

- Sensor zur Montage am Ort der Messung
- Anschluss wahlweise direkt an Tunnelleittechnik oder an abgesetztes Auswertegerät

Funktion

Die Anforderungen an die Beleuchtung eines Tunnels werden durch die Eigenschaften des menschlichen Auges bestimmt. Die Tunnelbeleuchtung muss so geregelt werden, dass Fahrer sowohl bei Tag als auch bei Nacht sich sicher einem Tunnel nähern, ihn durchfahren und verlassen können. Besonders bei Tageslicht kann sich das menschliche Auge erst langsam an das niedrigere Beleuchtungsniveau im Tunnel gewöhnen. Die Beleuchtung der Einfahrt ist also so zu regeln, dass Fahrer Hindernisse im Tunnel rechtzeitig erkennen und anhalten können. Nachts reicht es, wenn die Beleuchtungsverhältnisse im Tunnel mindestens den Beleuchtungsverhältnissen außerhalb des Tunnels entsprechen.

Wie eine Tunnelbeleuchtung auszulegen und zu regeln ist, wird in internationalen und nationalen Richtlinien und Normen beschrieben.

Die österreichische RVS sieht etwa nachts eine Reduktion der Innenstreckenbeleuchtung in Abhängigkeit der Beleuchtungsstärke vor dem Portal vor.

Der Beleuchtungsstärkesensor misst die Beleuchtungsstärke halbsphärisch. Der Messwert beschreibt damit den Lichtstrom, welcher auf die Oberfläche der transparenten Halbkugel des Sensors auftrifft.

Vorteile

- Speziell für die Anwendung in und vor Tunnels entwickelt
- Wählbarer Messbereich
- Beständig gegen Korrosion, UV, Öl und Säure

Anwendung

Tunnel sind wichtige Infrastrukturelemente in Straßennetzen, die Verbindungen zwischen Regionen erleichtern. Die darin herrschenden Umweltbedingungen werden durch Rauch, Nebel, Staub und Abgase beeinflusst und sollten überwacht werden, um Menschen bei der Durchfahrt keinen Gefahren und Beeinträchtigungen auszusetzen. Besonders Brände haben in der Vergangenheit dramatische Folgen gehabt. Zu jeder Zeit müssen Menschen im Tunnel mit ausreichend Atemluft versorgt und geeignete Sichtbedingungen sichergestellt werden.

Seit 1990 entwickelt, installiert und wartet JES Elektrotechnik GmbH Systeme zur Überwachung der Luftgüte und der Lichtverhältnisse in Tunnels. Unsere Systeme sind robust, langlebig und widerstandsfähig gegen die korrosive Tunnelatmosphäre und arbeiten betriebssicher und präzise. Sie erfüllen die Anforderungen Richtlinie der 2004/54/EG (Mindestanforderungen an die Sicherheit von Tunneln im transeuropäischen Straßennetz) und die präzisierten, nationalen Richtlinien und Vorschriften:

- Österreich: RVS 09.02 Tunnelausrüstung
- Deutschland: RABT Richtlinien für die Ausstattung und den Betrieb von Straßentunneln
- Schweiz: ASTRA Richtlinien und Fachhandbuch Betriebsund Sicherheitsausrüstungen (BSA)

Unser Lieferprogramm im Bereich Tunnelsicherheit beinhaltet Systeme zur Messung von:

- Toxischen Gasen wie CO, NO, NO₂, etc. (extraktiv oder in-situ)
- Sichttrübung (extraktiv oder in-situ)
- Luftgeschwindigkeit, -richtung und -temperatur
- Leuchtdichte (Annäherungsstrecke, Einsichtsstrecke, Übergangsstrecke, Innenstrecke)
- Beleuchtungsstärke

Beleuchtungsstärkemessung

Technische Daten

Beleuchtungsstärkem	nessung
Messwert	Beleuchtungsstärke
Messbereich	Wählbar, typisch 0 200 lx
Messgenauigkeit	± 3 % (5 bis 200 lx) ± 6 % (bei 1 lx) nicht definiert bei Messwerten unter 1 lx
Nullpunkt Drift	0,02 lx / °C
Referenz- temperatur	20 °C
Spektralbereich der Fotoempfindlichkeit	Durch V-Lambda Filter angepasst V _{rel} (λ) ≥ 80% zwischen 490 nm und 630 nm
Richtcharakteristik	Halbellipse, E _{rel} = 0,8 bei ± 35°

Beleuchtungsstärkesensor		
Bezeichnung	t/LUX	
Versorgung	24 VDC über Stromschleife	
Gehäusematerial	Glaskugelverstärktes Polyamid (PA 6 30% GK)	
Schutzart	IP 65	
Abmessungen	64 x 98 x 34 mm	
Gewicht	300 g	

Beleuchtungsstärkesensor beheizte Ausführung			
Bezeichnung	t/LUX-H		
Versorgung	230 VAC		
Heizung	100 W (geschaltet über Thermostat)		
Gehäusematerial	Glasfaserverstärktes Polyester, RAL 7035 oder Edelstahl 1.4571 (optional)		
Schutzart	IP 65		
Abmessungen	250 x 300 x 140 mm		
Gewicht	4,5 kg		

1 x 4-20 mA, passiv

Ko	onformitäten	
El	ektrotechnik	2006/95/EG Niederspannungsrichtlinie (LVD) 2004/108/EG Elektromagnetische Verträglichkeit (EMV) IEC 61326-1:2012 IEC 61010-1:2010
Τι	ınnelsicherheit	AT: RVS 09.02.41 DE: RABT 2006, DIN 67542-2

t/LUX-H

Kontakt

JES Elektrotechnik GmbH Davisstraße 7 5400 Hallein Österreich

Tel. +43 (6245) 81785 Fax +43 (6245) 81785-600 Email info@tunnelsicherheit.at Web www.tunnelsicherheit.at